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Outline

• Photon Counting:  good for deep space optical communications

• The Visible Light Photon Counter (VLPC):  what and why

• Test Configuration Overview:  JPL’s detector characterization 
facility

• VLPC Signal Processing:  analog signal chain and digital 
analysis

• VLPC Characterization:  pulse response, gain, noise, linearity

• Receiver Signal Processing:  front end architecture

• Ongoing work and Summary
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Photon Counting for Deep Space Optical Comm

• Photon counting can yield a higher channel 
capacity than phase-sensitive detectors

• Deep Space Optical Communications requires 
data encodings that maximize the (bits/sec) 
per (Joule/sec) metric

• PPM Encoding with Photon Counting 
detection is an attractive solution
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Higher efficiency means a choice of:
• Lower transmitter power
• Smaller receive aperture
• Higher data rate
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Visible Light Photon Counter

• The VLPC is a variant of a Si:As detector with 
avalanche gain that was developed by DRS 
Technologies for use in Fermilab’s D0 detector

– The combination of intrinsic Si and extrinsic As 
absorption gives a spectral response from 0.4 to 
28 microns

– Operating temperature range is typically 6 to 10K

• A non-Markovian gain process allows the device 
to exhibit a gain variance near one

– With a typical gain of 20000 to 40000 this means 
photon counting with photon number resolution!

VLPC Structure

8-detector VLPC chip
1-mm diameter detector area

Si:As Detector Detection Efficiency

M. Petroff and M. Stapelbroek 
IEEE Trans. Nuclear Sci., 36, 158, (1989)
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VPLC for Photon Counting Optical Comm

• If you want to photon count in the visible, and can cool to < 10K, the 
VLPC is a great detector!

• Unfortunately, for 1 to 1.5 micron optical communications, where there 
are good laser sources, the detection efficiency is poor, as this falls 
between the intrinsic Si and extrinsic As absorption bands

• However, the VLPC is an excellent device to demonstrate high rate 
photon counting optical communications while other photon number
devices with enhanced near-IR response are being developed

– Such as:

• arrays of Geiger mode InGaAs/InGaAsP avalanche photodiodes

• hybrid photomultiplier tubes with InGaAs/InGaAsP photocathodes

• Si:As detectors with a separate absorber layer

• InGaAs/InGaAsP MIS avalanche detectors
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VLPC Test Configuration

• The test configuration emulates deep space receive signal levels (pW) with 
CW background and a GHz rate intensity modulated optical data stream

• The detector output is typically digitized and post-processed in near-real time
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Detector Characterization Facility

• New lab at JPL dedicated to characterizing optical 
detectors for deep space optical communications
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VLPC Analog Signal Chain

• The initial preamplifier is 
also cooled to < 15K to 
minimize additive thermal 
noise for detector calibration

• A microstrip architecture 
allows the detector and 
amplifier to be physically 
separated
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Digital Analysis

• In addition to time domain displays and Fourier analysis, pulse height and pulse 
area histograms are essential to characterize the detector performance

– detector gain and excess noise are derived from pulse area histograms
– dark rate and photon counting linearity are derived from thresholded peak height 

histograms
– other histograms:  pulse width distribution and interarrival time
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Temporal Pulse Response

• Single photon output pulse is typically about 1 ns wide with 30000 electrons

VLPC Single Photon Response Normalized Power Spectrum

1064 nm CW 
Illumination



WHF - 11

Jet Propulsion Laboratory
California Institute of Technology

5712-27  SPIE Photonics West 2005 LASE

VLPC 1064 nm Detection Efficiency

• As expected, detection efficiency at 1064 nm is very poor
– However, electrical output pulse was verified to be independent of wavelength, so 

this wavelength can be used to verify optical communications performance
– Observed loss in detection efficiency at high incident flux rates (many 10’s of MHz 

detected photons) is due to loss of gain from space charge effects 
• We prefer to use 1064 nm as most of our calibrated sources and detectors are 

at that wavelength
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VLPC 1064 nm CW Performance

• 0.5 dB compression point at 17 MHz at 9.5K, for instance
– 5 dB compression at 50 MHz at 9.5K
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Photon Counting Linearity

• Exponential interarrival time distribution is expected for CW illumination

Afterpulse rate < 1 %, within 20 ns of main pulse

VLPC Arrival Rate Histogram

Photon Interarrival Times
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Receiver Front-End Architecture

• A flexible photon counting receiver front-end can be constructed by analog 
sampling of the detector output

– The pulse discriminator function is emulated by digital signal processing (DSP)

– This is more flexible than a pure hardware solution, comprising a comparator 
and counter, for instance

• DSP can implement FIR signal filtering, for instance

– Note:  a Geiger mode avalanche photodiode may be considered as having a 
hardwired “comparator” stage that implements a discriminator with only zero or 
greater than zero resolution

LNA ADCAnti-Alias Filter to DSP

Analog Signal Chain

Linear Mode
Photon Number 
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Post
Amp

Digital Discriminator
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Slot Energy Histograms

• Slot histograms represent the sum of 
signal and noise generated charge in a 
PPM slot

• Thresholding converts the slot integrated 
charge levels (“energy”) into a photon 
number

• Subsequent processing of the photon 
number signal is essentially “noise free”

ns = 0.3 ns = 1.1 ns = 2.1

A.U. A.U. A.U.

note:  horizontal scale on slot energy histograms varies between plots
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comparison of thresholded vs. non-thresholded 
signal processing for an example MLCD link
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Ongoing Work

• Work is in progress to acquire symbol (no FEC coding) and bit (FEC 
decoded) error rate data using the VLPC as the detector for a software 
digital receiver for comparison with theoretical predictions

• Testing with the VLPC has established techniques that are now being 
used to characterized newer high bandwidth photon number resolving 
detectors with enhanced near-IR sensitivity

– VLPC with PtSi layer added to improve near-IR absorption

– Intevac HPMT with InGaAs or InGaAsP photocathode

• This has now demonstrated 34% single photon detection efficiency at JPL, for 
instance
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Summary

• A photon counting / photon number resolving detector can be used
with a PPM encoded laser source to implement a high efficiency, high 
data rate optical communications link

• The VLPC is an excellent photon number resolving detector for the 0.4 
to 28 micron spectral range (although poor in the 1 to 2 micron range)
– High bandwidth with large area
– High gain with very low excess noise
– Can handle high flux rates:  many 10’s of MHz per mm2

– Although < 10K operation is problematic for many applications

• Other detector technologies are rapidly maturing that will be able to 
provide similar performance in the 1 to 1.5 micron regime


